Sains Malaysiana 54(3)(2025): 869-879
http://doi.org/10.17576/jsm-2025-5403-19
Thiocolchicoside Ameliorated Glycation via Lysine Blockade and Carbonyl Entrapment
(Thiocolchicoside Diperbaharui Glisasi melalui Sekatan Lisin dan Perangkap Karbonil)
NAJEEB KHATIAN1, TALHA BIN FAYYAZ1,
HAMMAD AHMED1, UZAIR NISAR1, MOHAMMAD ABID3,
SHUMAILA USMAN2, SYED ABID ALI3 & GHULAM ABBAS1,*
1Department
of Pharmacology, Faculty of Pharmacy, Ziauddin University, Karachi, Pakistan
2Department of Molecular Medicine, Ziauddin University, Karachi,
Pakistan
3H.E.J. Research Institute of Chemistry, International Center for
Chemical & Biological Sciences, University of Karachi, Karachi, Pakistan
Received: 30 March 2024/Accepted: 13
December 2024
Abstract
The phenomenon of glycation leads to formation of AGE,
which plays central role in various health hazards and accelerates the aging
process. The re-purposing approach provide rapid means to introducing potential
leads to drug discovery program. Keeping this into account, the present study
investigates thiocolchicoside, for its capacity to be repurposed as anti-glycation
agent. To assess the anti-glycation
potential, thiocolchicoside was selected on the basis
SAR, it is a muscle relaxant which is synthetic derivative of colchicoside, thiocolchicoside at
0.5, 1 and 2 mM were used and tested on various assays such as AGE inhibition
assay (intrinsic fluorescence), fructosamine adduct
formation (NBT assay) and availability of free lysine by using TNBSA followed
by Lysine blockade assay (OPA and molecular docking study). The structural
changes in the BSA protein was determined by using the thioflavin-T and Congo
red assays. Finally, the carbonyl entrapment assay also performed to confirm
the mechanism of the anti-glycation action. Thiocolchicoside significantly reduced the AGEs
production in BSA-fructose model with an IC50 value of 0.25 mM. The fructosamine adducts were
found to be reduced along with enhanced availability of free lysine.
Furthermore, it exhibited lysine blockade activity which was also validated by
computational study. Thiocolchicoside also prevented the alteration in glycation
mediated BSA conformation. Furthermore, it was also found to entrap carbonyl
moieties. Thiocolchicoside has a showed the
significant anti-glycation potential, which can be attributed to its ability to
block lysine residue and entrap carbonyl compounds. Hence, this clinically used
muscle relaxant present itself as a potential drug to be repurposed as
anti-glycation agent.
Keywords: BSA; glycation; HPLC; repurposing; thiocolchicoside
Abstract
Fenomena glikasi membawa kepada pembentukan AGE, yang memainkan peranan utama dalam pelbagai bahaya kesihatan dan mempercepatkan proses penuaan. Pendekatan guna semula menyediakan cara pantas untuk memperkenalkan potensi petunjuk kepada program penemuan dadah. Dengan mengambil kira perkara ini, penyelidikan ini mengkaji thiocolchicoside untuk kapasitinya untuk digunakan semula sebagai agen anti-glikasi. Untuk menilai potensi anti-glikasi, thiocolchicoside telah dipilih berdasarkan SAR, ia adalah relaksan otot yang merupakan terbitan sintetik colchicoside, thiocolchicoside pada 0.5, 1 dan 2 mM telah digunakan dan diuji pada pelbagai ujian seperti asai perencatan AGE (intrinsik pendarflour) dan pembentukan fruktosamin secara bebas oleh aduk. TNBSA diikuti dengan asai sekatan lisin (OPA dan kajian dok molekul). Perubahan struktur dalam protein BSA ditentukan dengan menggunakan thioflavin-T dan ujian merah Congo. Akhir sekali, ujian perangkap karbonil juga dilakukan untuk mengesahkan mekanisme tindakan anti-glikasi. Thiocolchicoside telah mengurangkan pengeluaran AGEs dengan ketara dalam model BSA-fruktosa dengan nilai IC50 sebanyak 0.25 mM. Tambahan fruktosamin didapati berkurangan bersama-sama dengan peningkatan ketersediaan lisin bebas. Tambahan pula, ia menunjukkan aktiviti sekatan lisin yang juga disahkan oleh kajian pengiraan. Thiocolchicoside juga menghalang perubahan dalam konformasi BSA pengantara glikasi. Tambahan pula, ia juga didapati memerangkap bahagian karbonil. Thiocolchicoside mempunyai potensi anti-glikasi yang ketara yang boleh dikaitkan dengan keupayaannya untuk menyekat sisa lisin dan memerangkap sebatian karbonil. Oleh itu, pelemas otot yang digunakan secara klinikal ini menunjukkan dirinya sebagai ubat yang berpotensi untuk digunakan semula sebagai agen anti-glikasi.
Kata kunci: BSA; glikasi; guna semula;
HPLC; thiocolchicoside
References
Abbas, G., Al-Harrasi, A.S., Hussain, H., Hussain, J.,
Rashid, R. & Choudhary, M.I. 2016. Antiglycation therapy: Discovery of
promising antiglycation agents for the management of diabetic complications. Pharmaceutical Biology 54: 198-206.
Ahmed,
N., Ahmed, U., Thornalley, P.J., Hager, K., Fleischer, G. & Münch, G. 2005.
Protein glycation, oxidation and nitration adduct residues and free adducts of
cerebrospinal fluid in Alzheimer's disease and link to cognitive impairment. Journal of Neurochemistry 92: 255-263.
Akhtar,
J., Khan, A.A., Ali, Z., Haider, R. & Yar, M.S. 2017. Structure-activity
relationship (SAR) study and design strategies of nitrogen-containing
heterocyclic moieties for their anticancer activities. European Journal of Medicinal Chemistry 125: 143-189.
Al-Saedi,
J., Mernea, M., Anghelescu, G.D.C., Nițu, C.D., Stoian, G. & Mihăilescu,
D. 2023. The inhibitory effect of Silybum marianum (milk thistle) seeds
extract on serum albumin glycation by glucose, fructose, and galactose. Romanian Journal of Biophysics 33(2):
41-55.
Alshanwani,
A.R., Hagar, H., Shaheen, S., Alhusaini, A.M., Arafah, M.M., Faddah, L.M.,
Alharbi, F.M., Sharma, A.K., Fayed, A. & Badr, A.M. 2022. A promising
antifibrotic drug, pyridoxamine attenuates thioacetamide-induced liver fibrosis
by combating oxidative stress, advanced glycation end products, and balancing
matrix metalloproteinases. Eur. J. Pharmacol. 923: 174910.
Anwar,
L., Ali, S.A., Khan, S., Uzairullah, M.M., Mustafa, N., Ali, U.A., Siddiqui,
F., Bhatti, H.A., Rehmani, S.J. & Abbas, G. 2023. Fenugreek seed ethanolic
extract inhibited formation of advanced glycation end products via scavenging
reactive carbonyl intermediates. Heliyon 9(6): e16866.
Arfat,
M.Y., Ashraf, J.M., Arif, Z. & Alam, K.J. 2014. Fine characterization of
glucosylated human IgG by biochemical and biophysical methods. International Journal of Biological
Macromolecules 69: 408-415.
Baker,
N.C., Ekins, S., Williams, A.J. & Tropsha, A. 2018. A bibliometric review
of drug repurposing. Drug Discovery Today 23: 661-672.
Chen, J.,
Yang, J., Ma, L., Li, J., Shahzad, N. & Kim, C.K. 2020.
Structure-antioxidant activity relationship of methoxy, phenolic hydroxyl, and
carboxylic acid groups of phenolic acids. Scientific
Reports 10(1): 2611.
Choi,
M.L. & Gandhi, S. 2018. Crucial role of protein oligomerization in the
pathogenesis of Alzheimer's and Parkinson's diseases. The FEBS Journal 285: 3631-3644.
Chowdhury,
A.A., Gawali, N.B., Bulani, V.D., Kothavade, P.S., Mestry, S.N., Deshpande,
P.S. & Juvekar, A.R. 2018. In vitro antiglycating effect and in
vivo neuroprotective activity of Trigonelline in d-galactose induced
cognitive impairment. Pharmacological
Reports 70: 372-377.
da Silva
Pereira, E.N.G., Silvares, R.R., Flores, E.E.I., Rodrigues, K.L., Ramos, I.P.,
Da Silva, I.J., Machado, M.P., Miranda, R.A., Pazos-Moura, C.C. &
Goncalves-De-Albuquerque, C.F. 2017. Hepatic microvascular dysfunction and
increased advanced glycation end products are components of non-alcoholic fatty
liver disease. PLoS ONE 12(6): e0179654.
Emel’yanov,
V.V. 2017. Glycation, antiglycation, and deglycation: Their role in aging
mechanisms and geroprotective effects (literature review). Advances in Gerontology 7: 1-9.
Emendato,
A., Milordini, G., Zacco, E., Sicorello, A., Dal Piaz, F., Guerrini, R.,
Thorogate, R., Picone, D. & Pastore, A. 2018. Glycation affects fibril
formation of Aβ peptides. Journal of
Biological Chemistry 293: 13100-13111.
Gil,
M.I., Tomás-Barberán, F.A., Hess-Pierce, B., Holcroft, D.M. & Kader, A.A. 2000.
Antioxidant activity of pomegranate juice and its relationship with phenolic
composition and processing. Journal of
Agricultural Food Chemistry 48: 4581-4589.
Goodno,
C.C., Swaisgood, H.E. & Catignani, G.L. 1981. A fluorimetric assay for
available lysine in proteins. Analytical
Biochemistry 115: 203-211.
Gupta,
R.K., Gupta, K., Sharma, A., Das, M., Ansari, I.A. & Dwivedi, P.D. 2018.
Maillard reaction in food allergy: Pros and cons. Critical Reviews in Food Science Nutrition 58: 208-226.
Hampel,
H., Hardy, J., Blennow, K., Chen, C., Perry, G., Kim, S.H., Villemagne, V.L.,
Aisen, P., Vendruscolo, M. & Iwatsubo, T. 2021. The amyloid-β pathway
in Alzheimer’s disease. Molecular Psychiatry 26: 5481-5503.
Iannuzzi,
C., Irace, G. & Sirangelo, I. 2014. Differential effects of glycation on
protein aggregation and amyloid formation. Frontiers
in Molecular Biosciences 1: 9.
Jakubczyk,
K., Dec, K., Kałduńska, J., Kawczuga, D., Kochman, J. & Janda, K.
2020. Reactive oxygen species-sources, functions, oxidative damage. Polski Merkuriusz Lekarski: Organ Polskiego
Towarzystwa Lekarskiego 48: 124-127.
Khan,
M.S., Tabrez, S., Al-Okail, M.S., Shaik, G.M., Bhat, S.A., Rehman, T.M.,
Husain, F.M. & Alajmi, M.F. 2021. Non-enzymatic glycation of protein
induces cancer cell proliferation and its inhibition by quercetin:
Spectroscopic, cytotoxicity and molecular docking studies. Journal of Biomolecular Structure Dynamics 39: 777-786.
Khan, R.
& Naseem, I. 2023. Antiglycation, antifibrillation and antioxidative
effects of para coumaric acid and vitamin D; an in-vitro and in-silico comparative-cum-synergistic approach. Biochimica
et Biophysica Acta -General Subjects 1867: 130455.
Liu, H.,
Wang, C., Qi, X., Zou, J. & Sun, Z. 2018. Antiglycation and antioxidant
activities of mogroside extract from Siraitia grosvenorii (Swingle)
fruits. Journal of Food Science Technology 55: 1880-1888.
Mil,
K.M., Gryciuk, M.E., Pawlukianiec, C., Żendzian-Piotrowska, M.,
Ładny, J.R., Zalewska, A. & Maciejczyk, M. 2021. Pleiotropic
properties of valsartan: Do they result from the antiglycooxidant activity?
Literature review and in vitro study. Oxidative Medicine Cellular Longevity 2021: 5575545.
Miles,
A.J., Ramalli, S.G. & Wallace, B. 2022. DichroWeb, a website for
calculating protein secondary structure from circular dichroism spectroscopic
data. Protein Science 31: 37-46.
Monnier,
V.M. 1989. Toward a Maillard reaction theory of aging. Progress in Clinical Biological Research 304: 1-22.
Mutha,
V.A.K., Ravichandrareddy, V., Achanta, P.S., Rendedula, D., Chandra, C., Shaik,
N.M., Kaliyaperumal, M., Korupolu, R.B., Gajbhiye, S.B. & Rumalla, C.S. 2019.
Structure elucidation of novel degradation products of thiocolchicoside by NMR
spectroscopy. Journal of Pharmaceutical
Biomedical Analysis 167: 49-58.
Mutlu,
H., Ceper, E.B., Li, X., Yang, J., Dong, W., Ozmen, M.M. & Theato, P. 2019.
Sulfur chemistry in polymer and materials science. Macromolecular Rapid Communications 40: 1800650.
Nguyen,
P.H., Ramamoorthy, A., Sahoo, B.R., Zheng, J., Faller, P., Straub, J.E.,
Dominguez, L., Shea, J.E., Dokholyan, N.V. & De Simone, A. 2021. Amyloid
oligomers: A joint experimental/computational perspective on Alzheimer’s
disease, Parkinson’s disease, type II diabetes, and amyotrophic lateral
sclerosis. Chemical Reviews 121:
2545-2647.
Ni, M.,
Song, X., Pan, J., Gong, D. & Zhang, G. 2021. Vitexin inhibits protein
glycation through structural protection, methylglyoxal trapping, and alteration
of glycation site. Journal of
Agricultural Food Chemistry 69: 2462-2476.
Núñez,
S., Moliner, C., Valero, M.S., Mustafa, A.M., Maggi, F., Gómez-Rincón, C. &
López, V. 2023. Antidiabetic and anti-obesity properties of a polyphenol-rich
flower extract from Tagetes erecta L. and its effects on Caenorhabditis
elegans fat storages. Journal of
Physiology Biochemistry 79: 427-440.
Oso,
B.J., Olaoye, I. & Oso, O.T. 2023. Experimental and hypothetical appraisal
on inhibition of glucose-induced glycation of bovine serum albumin by
quercetin. Journal of Genetic Engineering
Biotechnology 21(1): 123.
Parwani,
K. & Mandal, P. 2023. Role of advanced glycation end products and insulin
resistance in diabetic nephropathy. Archives
of Physiology Biochemistry 129: 95-107.
Saito, M.
& Marumo, K. 2015. Effects of collagen crosslinking on bone material
properties in health and disease. Calcified
Tissue International 97: 242-261.
Trott, O.
& Olson, A.J. 2010. AutoDock Vina: Improving the speed and accuracy of
docking with a new scoring function, efficient optimization, and
multithreading. Journal of Computational
Chemistry 31: 455-461.
Twarda-Clapa,
A., Olczak, A., Białkowska, A.M. & Koziołkiewicz, M. 2022.
Advanced glycation end-products (AGEs): Formation, chemistry, classification,
receptors, and diseases related to AGEs. Cells 11: 1312.
Umarkar,
A.R., Bavaskar, S.R. & Yewale, P.N. 2011. Thiocolchicoside as muscle relaxant:
A review. International Journal of Pharmacy and Biological Sciences 1(3): 364-371.
Waseem,
R., Shamsi, A., Khan, T., Anwer, A., Shahid, M., Kazim, S.N., Hassan, M.I.
& Islam, A. 2023. Characterization of advanced glycation end products and
aggregates of irisin: Multispectroscopic and microscopic approaches. Journal of Cellular Biochemistry 124:
156-168.
Wu, C.H.,
Sun, M.K., Shieh, J., Chen, C.S., Huang, C.W., Dai, C.A., Chang, S.W., Chen,
W.S. & Young, T.H. 2018. Ultrasound-responsive NIPAM-based hydrogels with
tunable profile of controlled release of large molecules. Ultrasonics 83: 157-163.
Yadav,
N., Palkhede, J.D. & Kim, S.Y. 2023. Anti-glucotoxicity effect of
phytoconstituents via inhibiting MGO-AGEs formation and breaking MGO-AGEs. International Journal of Molecular Sciences 24: 7672.
Yang, B.,
Zhang, Z., Liu, L., Li, Z. & Lin, H. 2023. Investigation of the
allergenicity alterations of shrimp tropomyosin as glycated by glucose and
maltotriose containing advanced glycation end products. Food Function 14: 10941-10954.
Zenker,
H.E., Van Lieshout, G.A., Van Gool, M.P., Bragt, M.C. & Hettinga, K.A. 2020.
Lysine blockage of milk proteins in infant formula impairs overall protein
digestibility and peptide release. Food
Function 11: 358-369.
*Corresponding
author; email: ghulam.abbas@hotmail.com
|